
Encrypt All The Things:
Implementing App Mobile Security
Nathan Freitas
@n8fr8 @guardianproject
https://guardianproject.info

INTENTION EXECUTIONvs.

Secure Your Mobile Life
Apps & Tools You Can Trust
The Guardian Project creates easy-to-use open source apps, mobile OS security enhancements, and

customized mobile devices for people around the world to help them communicate more freely, and protect

themselves from intrusion and monitoring.

The Guardian Project
https://guardianproject.info

● Overview of Guardian Project
Apps & Developer Libraries
(30m)

● Threat Models and War
Stories: Open Discussion about
Risks, Fears and Security Needs
(30m)

● Encrypted Databases: securing
structured data in activities,
services and content providers
(1hr)

● Encrypted Files: securing
arbitrary files from small to large
(30m)

● Secured Networking: defending
against man-in-the-middle, SSL
stripping, filtering and more
(30m)

● Hands-On Implementation time
for sample work or debugging
your own apps with new security
features (1.5hr)

Session Overview

Encryption
a *very* quick introduction

● Plaintext + Algorithm + Key
=Ciphertext

● Symmetric vs Asymmetric,
Private vs Public

● Randomness:
Actual vs Pseudo

● Common Cryptography Tools:
OpenSSL, PGP (GnuPG!),
BouncyCastle

What is Encryption?

Android Built-in Encryption
● HTTPS / TLS / SSL

● javax.crypto “BouncyCastle”

● OpenSSL

● Full Disk Encryption

● Android KeyChain (> API 18)

CipherKit
https://guardianproject.info/code

CipherKit “Platform”

SQLCipher

OpenSSL

java.io.File

IOCipherCache
Word

SQLite
android.database.*

NetCipher

Android
HTTP,

java.net.*

Orbot:
Tor for
Android

YOUR APP HERE!

“CipherKit” Dev Libraries
CipherKit is designed for Android app developers to make apps that are
able to ensure better privacy, security and anonymity
SQLCipher: Encrypted Database
SQLCipher is an SQLite extension that provides transparent 256-bit AES encryption of database files. It mirrors the standard
android.database API. Pages are encrypted before being written to disk and are decrypted when read back.

IOCipher: Encrypted Virtual Disk
IOCipher is a virtual encrypted disk for apps without requiring the device to be rooted. It uses a clone of the standard java.io API
for working with files. Just password handling & opening the virtual disk are what stand between developers and fully encrypted
file storage. It is based on libsqlfs and SQLCipher.

NetCipher: Encrypted Network Data & Tor Integration
NetCipher is improving network security. It provides a strong TLS/SSL verifier to help mitigate weaknesses in the certificate
authority system. It eases the implementation of supporting SOCKS and HTTP proxies into applications and also supports onion
routing for anonymity and traffic surveillance circumvention.

Let’s take a step back...
(to figure out what it is we are worried about)

Basic Threat Modeling
● “What are you worried about?”

aka Possible Attack Vectors

● What data are you collecting or services are you
providing that might be enticing or exposed?

● Are the potential threats you face coming from the
device (other apps or physical access) or the network?

War Stories?
● Have your apps, your business or your users or customers lives or

businesses been affected by malware or security breaches?

● Do you work in an industry that has specific requirements related to
security and privacy?

● Do you target a region of the world where users might be more exposed to
attack, surveillance or privacy violations?

•Forensic Analysis
•Rooting / Jail breaking
•OS Issues
•Infrequent Updates

•Removable Storage
•Cloud Services
•Targeted Attacks
•Device Sharing

Threat Landscape

Malware on the rise: http://blog.trendmicro.com/trendlabs-security-intelligence/mobile-
malware-high-risk-apps-hit-1m-mark/

Cached GPS data stored in plain text
http://elifelog.org/book/iphone-gps-cache-data

Forensic Extraction
http://www.cellebrite.com/mobile-forensics

"Universal Forensic
Extraction Devices" can
quickly and easily copy all
of the data from a mobile
phone.

If tools like these fall into
the wrong hands, it is easy
to assume any unencrypted
data on a device can be
easily stolen.

Man-in-the-Middle: http://thehackernews.com/2013/03/t-mobile-wi-fi-calling-
app-vulnerable.html

Trust Levels
ID Name Description

1 Owner of the mobile phone The primary operator of the mobile device. Assumed to have full access to
the device, potentially secured with a PIN/password screen.

2 Detainer / criminal / bad actor
An authority figure or criminal who has or will be detaining the Owner[1];

has access to mobile phone. may have only manual/brute force access, or
could have more sophisticated forensic extraction tools.

3 Operator of the mobile network Access to call and message logs (sender/receiver/message content) and
cell tower association data (rough location)

4 Employer, family or support organization;
May know the Owner[1]'s PIN/password, but otherwise has no access to

data or network information; On the receiving end of an emergency
message

5 Malicious App / Backdoor / Malware /
Forensics App

Access to some or all of the the Owner[1]'s data depending upon app data
permissions and encryption, as well as how full the backdoor is.

Authorization is often required by the user to allow apps to access data.

Assets
ID Name Description Trust Level

1 Personal data Names, emails, phone numbers, calendar events, mostly
stored on internal device memory

[1] Owner
[5] Malicious App (as authorized)

2 Communication data Text messages, emails, call logs, mostly stored on internal
device memory

[1] Owner
[3] Operator

[5] Malicious App (as authorized)

3 Application data Custom data stored by browsers, chat, social networking
apps, on both internal and memory card;

[1] Owner
[3] Operator (if not HTTP/S or SSL)
[5] Malicious App (as authorized)

4 Media files User generated and download photos, videos and music,
primarily stored on memory card

[1] Owner
[5] Malicious App

STRIDE Threat List
Type Examples

Spoofing - Detainer[2] or Malicious App[5] may gain control of mobile phone and pretend to be Owner[1]

Tampering - Malicious App[5] changes configuration data on the device

Repudiation - Malicious App[5] or other system backdoor may disable or block app
- Operator[3] may passively monitor messages and pass the information along to the Detainer[2]

Information
Disclosure

Detainer[2] could have full access to Assets stored on the mobile device
- Detainer[2] may have physical and logical forensic data extraction tools that can override password controls on

device and read from "wiped" storage
- Operator[3] may learn identity of Support Org[4]

Denial of Service - Communications may be blocked from being sent or received by Operator [3]
- Mobile phone may be disabled by Operator[3] or Malicious App[5] from running remote wipe

Elevation of
Privilege

- Malicious App [5] launches insecured intents or exploits known bug
- Detainer[2] or Operator[3] may be able to impersonate the Owner[1]

Security Controls / Mitigation
Type Tactics

Authentication
(vs. Spoofing)

- Create a a non obvious passphrase for use in app
- Lock screen of your mobile phone using passphrase or PIN

Authorization & Auditing
(vs Tampering,

Repudiation, Elevation of
Priv)

- Do not install any unnecessary, third-party mobile apps with network access
- Scan your mobile device using available malware tools
- Install a firewall or network connection monitoring utility

- Use a non-real name registered SIM card and mobile phone

Cryptography and
Identity Protection

(vs Information
Disclosure)

- For extra sensitive data, use an app that supports an and password authentication and encrypted database
- Use a mobile OS with disk and memory card encryption

- Use only browser-based HTTPS services that do not store data locally
- Do not store or save web service passwords on your mobile phone

Alternate
Communications

(vs Denial of Service)

- Use VPNs or Tor proxying software to hide source IP and traffic
- Use apps/services that work in WIFI only mode if data service disabled

- Use apps that allow device-to-device data sharing

SQLCipher
Encrypted Database

SQLCipher: Encrypted DB
SQLCipher is an SQLite extension that provides transparent 256-bit AES encryption of database files. It mirrors the
standard android.database API. Pages are encrypted before being written to disk and are decrypted when read back.

SQLCipher has a small footprint and great performance so it’s ideal for protecting embedded application databases and

is well suited for mobile development.

● Blazing fast performance with as little as 5-15% overhead for encryption

● 100% of data in the database file is encrypted

● Uses good security practices (CBC mode, key derivation)

● Zero-configuration and application level cryptography

● Algorithms provided by the peer reviewed OpenSSL crypto library.

http://sqlcipher.net/blog/2011/5/7/sqlcipher-performance-and-sqlcipherspeed.html
http://sqlcipher.net/design/
http://openssl.org/

CipherKit “Platform”

SQLCipher

OpenSSL

java.io.File

SQLite
android.database.*

NetCipher

Android
HTTP,

java.net.*

Orbot:
Tor for
Android

YOUR APP HERE!

IOCipherCache
Word

Defense in Depth
Make attacks difficult
with multiple layers

of security

Principle of
Least Privilege

Access to device
should not allow

access to all apps and
data

Data Security

Minimize impact of
unauthorized access,

on and off device

Strategies

1. Authentication

2. Encryption

3. Authenticity

SQLite vs. SQLCipher

~ sjlombardo$ hexdump -C sqlite.db
00000000 53 51 4c 69 74 65 20 66 6f 72 6d 61 74 20 33 00 |SQLite format 3.|
…
000003c0 65 74 32 74 32 03 43 52 45 41 54 45 20 54 41 42 |et2t2.CREATE TAB|
000003d0 4c 45 20 74 32 28 61 2c 62 29 24 01 06 17 11 11 |LE t2(a,b)$…..|
…
000007e0 20 74 68 65 20 73 68 6f 77 15 01 03 01 2f 01 6f | the show…./.o|
000007f0 6e 65 20 66 6f 72 20 74 68 65 20 6d 6f 6e 65 79 |ne for the money|

~ $ sqlite3 sqlcipher.db
sqlite> PRAGMA KEY=’test123′;
sqlite> CREATE TABLE t1(a,b);
sqlite> INSERT INTO t1(a,b) VALUES (‘one for the money’, ‘two for the show’);
sqlite> .quit

~ $ hexdump -C sqlite.db
00000000 84 d1 36 18 eb b5 82 90 c4 70 0d ee 43 cb 61 87 |.?6.?..?p.?C?a.|
00000010 91 42 3c cd 55 24 ab c6 c4 1d c6 67 b4 e3 96 bb |.B?..?|
00000bf0 8e 99 ee 28 23 43 ab a4 97 cd 63 42 8a 8e 7c c6 |..?(#C??.?cB..|?|

~ $ sqlite3 sqlcipher.db
sqlite> SELECT * FROM t1;
Error: file is encrypted or is not a database

https://github.com/sqlcipher/android-database-sqlcipher

import net.sqlcipher.database.SQLiteDatabase;

SQLiteDatabase.loadLibs(this);

SQLiteDatabase db = eventsData.getWritableDatabase

(“mypassword”);

Simple Steps
We’ve packaged up a very simple SDK for any Android developer to add SQLCipher into their app

with the following three steps:

1. Add a single sqlcipher.jar and a few .so’s to the application libs directory

2. Update the import path from android.database.sqlite.* toinfo.guardianproject.database.sqlite.* in

any source files that reference it. The original android.database.Cursor can still be used

unchanged.

3. Init the database in onCreate() and pass a variable argument to the open database method with

a password*:

● SQLiteDatabase.loadLibs(this); //first init the db libraries with the context
● SQLiteOpenHelper.getWritableDatabase(“thisismysecret”):

Features

•AES 256 CBC
•Random IVs
•Random salt
•Key Derivation
•MAC
•OpenSSL
•Fast startup
•No size limit

How it Works

Pager Codec

Key Derivation

Encryption

MAC

Database Salt Encrypted Data

Encrypted Data IV MAC

Encrypted Data

Encrypted Data IV MAC

Encrypted Data

Encrypted Data IV MAC

Page
1

Page
2

Page
3

Performance

Advanced

•PRAGMA rekey
•PRAGMA cipher
•PRAGMA kdf_iter
•PRAGMA cipher_page_size
•PRAGMA cipher_use_hmac
•ATTACH
•sqlcipher_export()

IOCipher
Encrypted Virtual File System

IOCipher: Encrypted Files
IOCipher provides a virtual encrypted disk for Android apps without requiring
the device to be rooted. It uses a clone of the standard java.io API for working
with files, so developers already know how to use it. Only password handling,
and opening the virtual disk are what stand between the developer and working
encrypted file storage. It is based on and SQLCipher.

IOCipher is a cousin to SQLCipher-for-Android since it is also based on
SQLCipher and uses the same approach of repurposing an API that developers
already know well. It is built on top of libsqlfs, a filesystem implemented in SQL
that exposes a FUSE API.

CipherKit “Platform”

SQLCipher

OpenSSL

java.io.File

IOCipherCache
Word

SQLite
android.database.*

NetCipher

Android
HTTP,

java.net.*

Orbot:
Tor for
Android

YOUR APP HERE!

IOCipher: Core Features
● Secure transparent app-level virtual encrypted disk

● No root required

● Only three new methods to learn: new VirtualFileSystem(dbFile),
VirtualFileSystem.mount(password), and VirtualFileSystem.unmount()

● Supports Android versions 2.1 and above

● Licensed under the LGPL v3+

IOCipher: The Stack

SQLite

SQLCipher

LibSQLFS / FUSE

info.guardianproject.iocipher Java/JNI wrapper API

Virtual Filesystem that maps to SQL
schema / structured database

Encryption layer for SQLite

Base storage mechanism

Adding IOCipher to App
● manage the password

● connect to your encrypted disk’s file using new VirtualFileSystem(dbFile)

● mount it with a password using VirtualFileSystem.mount(password)

● replace the relevant java.io import statements withinfo.guardianproject.iocipher, e.g.:

○ import info.guardianproject.iocipher.File;

○ import info.guardianproject.iocipher.FileOutputStream;

○ import info.guardianproject.iocipher.FileReader;

○ import info.guardianproject.iocipher.IOCipherFileChannel;

○ import info.guardianproject.iocipher.VirtualFileSystem;

○ import java.io.FileNotFoundException;

○ import java.io.IOException;

○ import java.io.InputStream;

○ import java.nio.channels.Channels;

○ import java.nio.channels.ReadableByteChannel;

https://github.com/guardianproject/IOCipherExample

import info.guardianproject.iocipher.File;

import info.guardianproject.iocipher.FileOutputStream;

import info.guardianproject.iocipher.VirtualFileSystem;

File dbFile = getDir("vfs", MODE_PRIVATE).getAbsolutePath() + "/myfiles.db";

vfs = new VirtualFileSystem(dbFile);

// TODO don't use a hard-coded password! prompt for the password

vfs.mount("my fake password");

File file = new File(dirPath);

File[] files = file.listFiles();

CacheWord
Secure Passphrase Management

CacheWord
CacheWord is an Android library project for passphrase caching and

management. It helps app developers securely generate, store, and access

secrets derived from a user's passphrase.

1. Secrets Management: how the secret key material for your app is

generated, stored, and accessed

2. Passphrase Caching: store the passphrase in memory to avoid constantly

prompting the user

CipherKit “Platform”

SQLCipher

OpenSSL

java.io.File

IOCipherCache
Word

SQLite
android.database.*

NetCipher

Android
HTTP,

java.net.*

Orbot:
Tor for
Android

YOUR APP HERE!

CacheWord Features
CacheWord manages key derivation, verification, persistence, passphrase

resetting, and caching secret key material in memory.

● Strong key derivation (PBKDF2)

● Secure secret storage (AES-256 GCM)

● Persistent notification: informs the user the app data is unlocked

● Configurable timeout: after a specified time of inactivity the app locks itself

● Manual clearing: the user can forcibly lock the application

● Uses Android's Keystore on 4.x if available - Not Yet Implemented

The Problem with Android...

Activity

SQLCipher DB

onCreate()
- prompt user for passwd
- unlock SQLCipher

onDestroy()
- close DB instance
- lose cached password

Activity
onCreate()
- prompt user for passwd
AGAIN! (annoying)

(Activity, Service and even App lifespan is unpredictable)

Cacheword Solution

Activity

SQLCipher DB

onCreate()
- prompt user for passwd
- store in CacheWord

onDestroy()
- close DB instance (but
keep cacheword alive!)

Activity onCreate()
- re-open DB instance
via cached passphrase
in CacheWord

Cacheword (long running, foreground, minimal memory service)

https://github.com/guardianproject/cacheword/tree/master/sample

public class CacheWordSampleActivity extends Activity implements ICacheWordSubscriber {

…

 mCacheWord = new CacheWordActivityHandler(this);

@Override

 public void onCacheWordLocked() {}

 @Override

 public void onCacheWordOpened() {

 // fetch the encryption key from CacheWordService

 SecretKey key = ((PassphraseSecrets) mCacheWord.getCachedSecrets()).getSecretKey();

 }

 @Override

 public void onCacheWordUninitialized() {

 mCacheWord.setCachedSecrets(PassphraseSecrets.initializeSecrets(

 CacheWordSampleActivity.this, “my secret passphrase”));

 }

NetCipher
Secured Networking

CipherKit “Platform”

SQLCipher

OpenSSL

java.io.File

IOCipherCache
Word

SQLite
android.database.*

NetCipher

Android
HTTP,

java.net.*

Orbot:
Tor for
Android

YOUR APP HERE!

NetCipher: 3 reasons
1. Stronger Sockets: Through support for the right cipher suites, pinning and

more, we ensure your encrypted connections are as strong as possible.

2. Proxied Connection Support: HTTP and SOCKS proxy connection

support for HTTP and HTTP/S traffic through specific configuration of the

Apache HTTPClient library

3. OrbotHelper: a utility class to support application integration with Orbot:

Tor for Android. Check if its installed, running, etc.

Network Threats

Your App
Your

Remote
Service

Firewall /
Filter

Your App

Logging /
Man-in-the
Middle

NetCipher: Tor Proxying

Your App
Your

Remote
Service

Orbot:
Tor for
Android

Tor Network

Firewall /
Filter

Logging /
Man-in-the
Middle

https://github.com/guardianproject/NetCipher

 OrbotHelper oc = new OrbotHelper(this);

 if (!oc.isOrbotInstalled())

 oc.promptToInstall(this);

 else if (!oc.isOrbotRunning())

 oc.requestOrbotStart(this);

 StrongHttpsClient httpclient = new StrongHttpsClient(getApplicationContext());

 if (pType == null)

 httpclient.useProxy(false, null, null, -1);

 else if (pType == Proxy.Type.SOCKS)

 httpclient.useProxy(true, "SOCKS", proxyHost, proxyPort);

 else if (pType == Proxy.Type.HTTP)

 httpclient.useProxy(true, ConnRoutePNames.DEFAULT_PROXY, proxyHost, proxyPort);

Hands-On Time!
Work with Samples or Your Own App

Time to encrypt all the things!

SQLCipher

OpenSSL

java.io.File

IOCipherCache
Word

SQLite
android.database.*

NetCipher

Android
HTTP,

java.net.*

Orbot:
Tor for
Android

YOUR APP HERE!

Questions?
What haven’t we covered?

From here...
https://guardianproject.info/contact

Guardian-Dev and SQLCipher mailing lists
IRC (freenode): #guardianproject
Project Trackers: https://dev.guardianproject.info

support@guardianproject.info

https://guardianproject.info/contact
https://guardianproject.info/contact
https://dev.guardianproject.info
mailto:support@guardianproject.info
mailto:support@guardianproject.info

